G2V Optics soars on aerospace opportunities

G2V Optics has sent solar simulators to NASA to help test a spacecraft that aims to solve Earth’s growing space-junk problem. It’s the latest success in the Edmonton-based company’s evolution toward using its “Engineered Sunlight” technology to help aerospace organizations know what to expect from the sun once they get their devices into orbit.

“It’s a huge project, and … a fantastic feather in the cap of everybody in our team who worked on it,” G2V Optics CEO Ryan Tucker told Taproot. “And I think an awesome thing for Edmonton and our technology.”

G2V Optics has received US$822,100 in contracts from NASA since 2021. This project, the culmination of a two-year procurement process, is for the testing of EIGHT-1a spacecraft that is scheduled to be launched in 2026 to service Landsat 7, a satellite that is past its prime. If OSAM-1 can successfully dock with Landsat 7 and refuel it, then NASA will be a step closer to increasing the life expectancy of satellites, even those that were not designed to be serviced in orbit, and decrease the number of out-of-commission craft at risk of smashing into each other around our planet.

This is not the first foray into the space business for G2V Optics. In addition to a previous contract with NASA laboratories, the company has been working with the National Center for Space Studies (CNES) in France to enable the testing of technology involved in the 2024 Martian Moons eXploration (MMX) missionin which a rover will land on Phobos and fly by Deimos.

“We don’t put anything into space. But we’re creating all the photons to make sure that everything works when they send it there,” Tucker said, noting that it’s fun to have a preview of the space research going on. “We kind of get to peek behind the curtain of these really interesting and exciting space exploration missions before they become public.”

Space is not where G2V Optics started when it was founded in 2015. After founder and CTO Michael Taschuk first developed the company’s light-emitting diode technology at the National Institute for Nanotechnology at the University of Alberta, its first applications tended to be in food production, specifically to maximize the efficacy of vertical farming.

“From a technical perspective, (we) did remarkable things,” Tucker said. “We were able to grow 30% more biomass with the same amount of energy and improve what was possible by using the complexity of our technology. But we realized that we were too early for that market … it’s such a nascent industry that’s dealing with its own challenges around scaling.”

At the same time, solar cell researchers and aerospace companies were ready for what G2V makes.

“We all of a sudden started working in this sector, with this more complex requirement, that was a perfect fit for what we had developed,” Tucker said. “That’s the traction that you’re looking for, right? Your job as a startup is to find that fit. And it wasn’t exactly where we thought it was. But we were, I like to think, smart enough to listen to it and to chase it when we found it.”

Leave a Comment